
JOUSBoost: An R Package for Improving Machine
Learning Classifier Probability Estimates

Matthew Olson
University of Pennsylvania

Abstract

Machine learning classifiers, such as AdaBoost, are often able to achieve superior
misclassification error on a vast range of binary classification problems. However, these
same algorithms often produce poor conditional class probability estimates. It is shown
in Mease et al. (2007) that any classifier which achieves the Bayes error rate can be
turned into a good probability estimator by fitting the classifier to different re-weightings
of the original data set. The authors call this procedure JOUS, whose name derives from
the steps of Jittering the training data, along with Over/Under-Sampling. The original
paper applied this algorithm successfully to the AdaBoost classifier.

This paper describes an implementation of the JOUS algorithm in the R package
JOUSBoost (Olson 2017). The package allows the user to apply JOUS to a generic
classifier in order to produce probability estimates. This is useful not only for improving
a classifier’s existing probability estimates, but also for producing probability estimates for
classifiers that have no natural probability output. The JOUSBoost package also contains
an efficient implementation of AdaBoost. JOUSBoost is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=JOUSBoost.

Keywords: probability estimation, machine learning, AdaBoost, R.

1. Introduction
It is common practice to evaluate a machine learning classifier by the fraction of cases it
misclassifies on a test set, that is, its test error. In binary classification, the test error
implicitly weights false negatives the same as false positives. Therefore, minimizing test
error is equivalent to estimating the conditional class median (Elkan 2001). However, in
many applications, a user is interested in classification that involves an asymmetric cost for
different types of errors. For example, in a diagnostic test, it may be much more costly
for the clinician to classify a sick patient as healthy than the more conservative mistake of
classifying a healthy patient as sick. More generally, one is often interested in estimating the
probability of class membership for a new observation. This is a natural goal in a variety
of contexts, including propensity score estimation, ranking, classification with unequal costs,
and expected utility calculations, to name a few.
The manner in which one produces probability estimates differs greatly from classifier to
classifier. Some methods, such as logistic regression or naive Bayes, can be cast in terms
of generative probability models, from which it is natural to consider notions of probability.
For example, logistic regression posits that the the log-odds of class membership is a linear

https://CRAN.R-project.org/package=JOUSBoost

2 Probability Estimation in R

function of the input variables. Once this linear function is estimated, one can estimate
probabilities in a straightforward way. At the other end of the spectrum, there is a broad
set of classifiers for which there is no natural notion of probability. Support vector machines,
for example, are motivated from a purely optimization-based point of view: construct a
hyperplane which maximally separates the classes in the training set. A priori, there is no
model-based notion of a class probability.
While many of these classifiers can achieve superior generalization error in terms of test error,
these same classifiers can sometimes produce very poor probability estimates (Niculescu-Mizil
and Caruana 2005). One can find methodology for improving probability estimates from
specific classifiers in the literature. As an example, Wang et al. (2008) suggest improvements
for support vector machines based on bracketing. Their procedure is implemented in the R
package probsvm (Zhang et al. 2013). Other methodology is more generally applicable to a
broader class of machine learning classifiers. Niculescu-Mizil and Caruana (2005) explore Platt
scaling (Platt 1999) and isotonic regression as a means to producing calibrated probability
estimates. These methods are implemented in the R package CORElearn (Robnik-Sikonja
and Savicky 2017) as well as the Python package sklearn (Pedregosa et al. 2011). These
implementations are both limited to the extent that they require a classifier to produce a
continuous valued “score" (instead of merely a class label), and they are restricted to classifiers
implemented in each respective package.
In this article, we present the R package JOUSBoost, which implements methodology to
improve the conditional class probability estimates returned by machine learning classifiers
such as AdaBoost. In particular, we implement the Jittering with Under/Over Sampling
algorithm of Mease et al. (2007), which allows one to form principled probability estimates
from a classifier (we will refer to this algorithm as JOUS throughout). Unlike Platt scaling or
isotonic regression, JOUS is generically applicable to any classifier, even those that are capable
of only producing a class label, and not a continuous valued score. Our implementation was
designed to be as efficient as possible, leveraging C++ and parallelization wherever possible.
We also include a lightweight implementation of AdaBoost in our package, the classifier
that was considered in the original JOUS paper (Mease et al. 2007). Section 4.1 provides
implementation details as well as a performance comparison to other implementations of
AdaBoost.
In Section 2 we provide background on the AdaBoost algorithm as well as its use and short-
coming in conditional class probability estimation. With this background, we then present
the motivation for the JOUS algorithm in Section 3 and discuss some implementation details.
After giving an outline of JOUS, we describe the JOUSBoost package in Section 4 as well
as a number of use cases. In particular, we describe JOUS as applied to AdaBoost, gradient
boosting, a support vector machine, and discuss options for use with a parallel back end.
Finally, Appendix A includes some further details on the theoretical background underlying
JOUS.

2. Background

In this section we will introduce the original AdaBoost.M1 algorithm proposed in Freund and
Schapire (1996), as well as discuss a traditional approach for creating probability estimates
from the classifier’s output. After introducing AdaBoost, we will present a simulated example

Matthew Olson 3

to demonstrate that traditional probability estimates returned by AdaBoost often diverge to
0 and 1, motivating the need for the JOUS algorithm.

2.1. AdaBoost

We begin with customary notation for a classification problem. We are given a set of N pairs
of training data pairs {(xi, yi)}N

i=1, where each predictor variable xi ∈ X and each response
variable yi ∈ {−1, 1}. For statistical tractability, we assume that these pairs are independent
and identically distributed, with the response variable linked to the predictor variable through
the conditional class probability P (y = 1|x). In practice, this probability is always unknown.
In many cases, the analyst is concerned with simply predicting a class for a new example
x, but as we discussed, it is also of interest to form an estimate for the conditional class
probability.
The AdaBoost algorithm introduced in Freund and Schapire (1996) has been found to be one
of the most successful off-the-shelf classifiers in existence, and has led to the development of
a large class of related machine learning classifiers known generically as boosting algorithms.
AdaBoost is designed to take a simple base classification rule, known as a weak learner, and
output a more powerful classifier by repeatedly fitting this rule on different weighted versions
of the data set. In particular, one fits a collection of M base classifiers f1, . . . , fM to the data
in sequence, each classifier working to correct the mistakes of the previous one. One can then
form a prediction from this sequence of classifiers by aggregating their output into a score
function FM . The most common base classifier used in practice is a decision tree, and this
is the base classifier we consider in our package for our implementation of AdaBoost. The
precise steps of AdaBoost are laid out in Algorithm 1.

Algorithm 1 AdaBoost

1. Initialize the observation weights wi = 1
N

, i = 1, 2, . . . , N .
2. For m = 1 to M :

(a) Fit classifier fm to the training data using weights wi.
(b) Compute the weighted training error ϵm = ∑n

i=1 wiI [yi ̸= fm (xi)] .

(c) Compute αm = 1
2 log 1−ϵm

ϵm
.

(d) Set Fm = Fm−1 + αmfm.
(e) Update weights to wi = wi = e−αmft(xi)yi and normalize by wi = wi∑n

i=1 wi
.

3. Output prediction F (x) = sign (FM (x)) .

Despite a tremendous track record of achieving low misclassification error on a number of data
sets, it is still a largely unresolved question as to why AdaBoost works so well. There have
been a number of diverse explanations in the literature, many of which are summarized in the
book Schapire and Freund (2012). One of the most celebrated interpretations of AdaBoost
has been given in Friedman et al. (2000), in which it is viewed as a stagewise optimization
approach to fitting a logistic regression. The implication of this perspective is that one can use
the score function FM produced by the iterations of AdaBoost to form probability estimates

4 Probability Estimation in R

according to
P (y = 1|x) = 1

1 + e−2FM (x) . (1)

It should be emphasized that class probabilities do not appear anywhere in Algorithm 1, and
as such, we can only judge Equation 1 to the extent that is is useful (or is not) in practice.
However, this remains one of the most common ways to extract probability estimates from
boosting algorithms, and is the default in popular packages such as the R package ada.

2.2. Probability estimates for AdaBoost

Although commonly used, it has been shown that Equation 1 often fails to produce reasonable
probability estimates (Mease et al. 2007). In particular, for some data sets, it is optimal to run
AdaBoost for a large number of rounds M in order to achieve the lowest possible classification
error, but in doing so, the probabilities returned by Equation 1 are driven to the extremes of
0 and 1. In this section, we will present a simulated example to illustrate this point in order
to demonstrate the need for the JOUSBoost machinery.
The model we consider here is borrowed from Friedman et al. (2000) and reveals the pattern
of diverging probability estimates just discussed. In this probability model, we first draw
a predictor variable x ∈ R10 with each component normally distributed with mean 0 and
variance 1. We then generate the class label for the associated response y according to the
follow log-odds ratio:

log P (y = 1|x)
P (y = −1|x) = γ

(
1 − x(1) + x(2) − x(3) + x(4) − x(5) + x(6)

) 6∑
j=1

x(j)

where we set γ = 0.5. The parameter γ controls the Bayes error rate. In our simulations, we
draw a training set of size n = 500 and we produce probability estimates for a holdout test
set using AdaBoost applied to depth three decision trees in two ways: the logistic regression
approach from Equation 1 and the JOUSBoost approach discussed in Section 3. We consider
a few different metrics to compare the quality of probability estimates produced by these two
methods:

Misclassification Error: : 1
N

N∑
i=1

I (ŷi ̸= yi)

Mean Squared Error : 1
N

N∑
i=1

(p(xi) − p̂(xi))2

Log-Loss : − 1
N

N∑
i=1

p(xi) log p̂(xi) + (1 − p(xi)) log(1 − p̂(xi)))

where we use the notation P (y = 1|x) ≡ p(x), p̂(x) is our estimate for p(x), and ŷ is our class
prediction.
In Figure 1, we plot the three different types of error as a function of the number of boost-
ing iterations. The red line corresponds to the probabilities produced by JOUS, and the
black line to the probabilities produced from the logistic link function. As demonstrated in

Matthew Olson 5

Figure 1b, the misclassification rate is roughly monotonically decreasing with the number of
boosting iterations for AdaBoost. However, the story is quite different for the error rates
corresponding to mean squared error and log-loss. The quality of probability estimates pro-
duced by AdaBoost is almost strictly increasing with the number of boosting iterations: in
other words, for the best probability estimates using the logistic link function, one should
run AdaBoost for a very small number of iterations. However, this is clearly at odds with
our desire to produce a small misclassification error rate. Conversely, AdaBoost run using
the JOUS procedure for probability estimates shows much more reasonable behavior. In line
with the behavior of the misclassification error, both mean squared error and log loss are
monotonically decreasing with the number of boosting iterations, achieving values that are
uniformly smaller than those produced by the logistic link function approach.

(a) Misclassification Error (b) Mean Squared Error (c) Log Loss

Figure 1: Plots showing misclassification error, mean squared error in probability estimates,
and logarithmic loss for the AdaBoost classifier as a function of the number of boosting
iterations. The black line is associated with AdaBoost when probabilities are calculated
according to a logistic link function, and the red line is associated with AdaBoost when
probabilities are calculated according to the under-sampled JOUS procedure.

3. The JOUS algorithm
In this section we present motivation and implementation of the JOUS algorithm.

3.1. Motivation

The intuition behind the JOUS algorithm is that probability estimation can be reduced to a
sequence of classification problems. In order to see this, let us first take a small diversion to
understand the problem of classification with unequal costs.
The first point to make is that classification with unequal costs amounts to estimating a
conditional quantile of the data. As before, consider a random variable y taking values in
{−1, 1}, a random variable x, and a conditional distribution p = p(y = 1|x). Let us further
assign costs to incorrect predictions about y. We will attach a cost c ∈ (0, 1) to predicting
that y = 1 when y = −1, a false positive, and a cost (1 − c) to predicting that y = −1 when
y = 1, a false negative. Our goal in making a prediction about the value of y conditional on
x should be to minimize our expected loss. Our expected loss when predicting that y = 1
is (1 − p)c, and our expected loss when predicting that y = −1 is p(1 − c). Thus we should

6 Probability Estimation in R

predict that y = 1 if and only if
(1 − p)c < p(1 − c),

or equivalently, when c < p. In the case when the cost of a false negative and false positive
are the same, c = 1/2, and our optimal prediction boils down to choosing y = 1 only if
the p > 1/2. In other words, achieving a low misclassification rate is exactly the same as
estimating the conditional median. We can estimate other quantiles analogously by changing
the costs of false negatives and false positives when fitting our classifier.
One way to tilt these costs is to directly modify the objective function being fit by our
classifier. Oftentimes, a surrogate to misclassification loss is estimated - such as deviance or
exponential loss - and one modifies this criterion instead. For example, when fitting decision
trees, one way to account for asymmetric costs is to modify the splitting function used at
each node in the tree to reflect these different costs. There have also been attempts in the
literature to modify the AdaBoost algorithm to directly account for asymmetric costs (Fan
et al. 1999). However, this approach is not always possible, and may not have the intended
consequence in certain kinds of decision trees (Elkan 2001).
A more general way of assigning asymmetric costs in the fitting procedure is tilt the data
itself by over or undersampling observations from one class (Elkan 2001). Mease et al. (2007)
work out the exact proportion in which one should sample from the different classes in order
to achieve q quantile estimation. In particular, if N+ and N− denote the number of positively
and negatively labeled points in the data set, then one should sample k+ positively labeled
examples and k− negative examples in such a way to satisfy

k+
k−

= N+
N−

1 − q

q
. (2)

When one applies a classifier to this sampled data set, a prediction of y = 1 will correspond
to the assertion that P(y = 1|x) > q on the original data set. One can leverage the previous
discussion of quantile estimation and data sampling to assemble an algorithm for probability
estimation Algorithm 2.

Algorithm 2 JOUSBoost
1. Fix an integer δ and a grid of quantiles Q = {1/δ, 2/δ, . . . , 1 − 1/δ}.

2. For q ∈ Q:
(a) Find k+ and k− that satisfy k+

k−
= N+

N−
1−q

q .

(b) Sample k+ observations for which yi = 1 and k− observations for which yi = −1.
(c) Fit classifier f̂q to the tilted data set.

3. Estimate P (y = 1|x) > q if f̂q(x) = 1.

3.2. Implementation details

There are a number of details underlying the JOUS algorithm which are implemented in our
R package. One important issue regards the manner in which observations are sampled from

Matthew Olson 7

each class in step 2(b) of Algorithm 2. The only constraint the algorithm places on k+ and k−
is that their ratio must equal a fixed constant. Our package implements both over-sampling
and under-sampling. In the first case we set k+ = δN+ (1 − q) and k− = δN−q, and sample
with replacement from each class. In the under-sampling case we set k+ = N+ (1 − q) and
k− = N−q and sample without replacement.
Another important detail in the JOUS algorithm relates to step 2(c). While in theory re-
weighting the data set allows one to classify at different quantiles, the AdaBoost algorithm
tends to behave somewhat differently. It was pointed out in Mease et al. (2007) that the
AdaBoost classifier effectively treats a tilted data set as a re-initialization of its starting
weights, and this has little affect on its final fit. In order to get around this issue, one can
apply “jittering" to the data set by applying a small amount of uniform random noise to the
predictors. This issue is discussed more carefully in Mease et al. (2007). There is also a very
thoughtful discussion of the costs and benefits of over/under sampling in Chawla et al. (2002),
along with discussion about perturbing the predictors when over-sampling.
Finally, it is very important to note that in practice one needs to take care to enforce mono-
tonicity in the quantile estimates output by JOUS in step 3. It is clear that at the population
level that for q1 ≤ q2, I[P(y = 1|x) > q2] ≤ I[P(y = 1|x) > q1]. However, there is no guaran-
tee that this reasonable property should hold for our quantile estimation functions, that is,
f̂q2(x) ≤ f̂q1(x). This problem was also pointed out in Wang et al. (2008). In order to enforce
monotonicity, Mease et al. (2007) suggests estimating empirical probabilities in the following
way:

• If f̂0.5(x) = 1 set p̂(x) = min{q > 0.5|f̂q(x) = 0}, and p̂(x) = 1 − 1/(2δ) if there is no
such q.

• If f̂0.5(x) = 0 set p̂(x) = max{q < 0.5|f̂q(x) = 1}, and p̂(x) = 1/(2δ) if there is no such
q.

There are a number of other more subtle implementation details, and the reader is invited to
consult Mease et al. (2007) for more information.
On a final note, we would like to comment on the computational burden of the JOUS algo-
rithm, as well as steps we have taken to make our implementation as efficient as possible. For
one, step (2) of Algorithm 2 requires that we fit a classifier to δ different weighted versions of
the data set, where the default value of δ = 10. Moreover, when creating probability estimates
on new data, we must create class predictions for each of the δ classifiers we fit during the
training process. To alleviate some of this burden, we have included a parallel back end to
both the fitting and predicting steps in JOUS using the R package foreach (Analytics and
Weston 2014b). The user interface for this back end is described more in the following section.
Furthermore, we discussed that step (3) of Algorithm 2 requires a enforcing a monotonicity
constraint. We have implemented this step in C++ with the help of the R package Rcpp
(Eddelbuettel and François 2011). In light of this discussion, we would like to remind the
reader that the extra computational cost is the price one pays for using an algorithm with
relatively relaxed assumptions.

4. The JOUSBoost package

8 Probability Estimation in R

In this section we will walk through the basic usage of the JOUSBoost package. In particular,
we will discuss our implementation of AdaBoost, as well as demonstrate the application of the
JOUS procedure to AdaBoost, a gradient boosting machine, and a support vector machine.
Users can access the documentation of all of the functions discussed in this section in an R
session through the use of the help commands, for instance, ?adaboost.
The examples in this section rely on data generated from the two-dimensional circle model
found in Mease et al. (2007) using the function circle_data in our package. The two-
dimensional circle model consists of (x, y) pairs, where x is drawn uniformly over the square
[−28, 28]2 and the conditional probability that y = 1 given x is drawn according to

P (y = 1|x) =

1 if r(x) < 8
28−r(x)

20 if 8 ≤ r(x) ≤ 28
0 if r(x) > 8

Figure 2: A plot of the conditional probability function for the two-dimensional circle model.

where r(x) is the Euclidean distance of a point from the origin. It is easy to visualize the
conditional density in this model as concentric circles, as in Figure 2. We will train our
models on n = 1, 000 examples generated from this distribution, and then we will evaluate
our models on an independently drawn test set consisting of n = 10, 000 examples. The user
can replicate our work with the following code below:

R> library('JOUSBoost')
R> set.seed(123)
R> train_data = circle_data(1e3)
R> test_data = circle_data(1e4)

The lists train_data and test_data contains list members that consist of a matrix X of
predictor variables, a response vector y taking values in {−1, 1}, and a vector prob of the
true underlying probabilities.

Matthew Olson 9

4.1. AdaBoost implementation

The JOUSBoost package contains a lightweight implementation of the AdaBoost algorithm
applied to decision trees. The main inputs to the adaboost function are a matrix X of real
values numbers, a vector y of integer class labels in {−1, 1}, the depth of decision tree for
which to apply AdaBoost, and the number of boosting rounds. In addition, the user can
further customize the type of decision tree fit at each iteration by passing in an optional
rpart.control object. For instance one might specify the tree node-size or pruning options.
The user can also specify whether to run the function in verbose mode by setting the flag
verbose = TRUE. In the code below, we fit an AdaBoost classifier using depth 5 decision
trees, boosted for 250 rounds.

R> boost = adaboost(train_data[['X']], train_data[['y']], tree_depth = 5,
+ n_rounds = 250)
R> boost

AdaBoost: tree_depth = 5 rounds = 250

In-sample confusion matrix:
yhat

y -1 1
-1 651 0
1 0 349

The output of the fit produced by adaboost is an object of type adaboost. The object
contains the decision trees fit by AdaBoost along with their weights, as well as a number
of pieces of other information describing the parameters of the fit. There are corresponding
print and predict generic functions that can be called on an object of type adaboost.
Each AdaBoost classifier has to store potentially hundreds of fitted decision trees (in this case
250), which can require a substantial amount of memory. We have taken measures to make
our tree fits as lean as possible to minimize unnecessary overhead. A lot of the overhead comes
from redundant formulas that are stored in the decision tree fits produced by the function
rpart in the rpart package (Therneau et al. 2015). We have eliminated this redundancy,
along with other of nonessential information stored in each tree.
In Table 1 we report the average training time in seconds and the relative memory usage for
our implementation of adaboost, as well as that for the from three other R packages for the
classification problem described in the beginning of this section. In particular, we consider
fastAdaboost, ada (Culp et al. 2012), and adabag. The JOUSBoost version is slightly slower
than that from ada and fastAdaboost. However, the memory usage is markedly smaller in our
package. As reported in the second column of Table 1, our implementation requires about
five times less memory that each of the other three packages (compare 6.5Mb to 35Mb). Each
package constructs trees using rpart, but ours trims out redundant formulas.
Of course, each of these competing packages has its own strengths and weaknesses relative
to ours. The Adaboost classifiers in ada and adabag contain other variations of boosting
algorithms, as well as support for variable importance, plotting, and other diagnostics. The
ada package also supports other types of loss functions.

10 Probability Estimation in R

Training Time (s) Relative Memory Usage
JOUSBoost 5.74 1.00

fastAdaboost 4.56 5.55
ada 3.98 4.72

adabag 15.99 5.57

Table 1: Performance comparison between different implementation of AdaBoost. The first
column reports the average training time in seconds (over 10 replications), and the second
column reports the fraction of memory required by each classifier relative to that of the
JOUSBoost implementation. See Appendix B for more details.

Returning to our example, it is also easy to make predictions with our fitted model. The
default setting on the predict method is to return class label predictions, but one can also
obtain probability estimates in the usual way by passing the score through a logistic link
function (Friedman et al. 2000). As an additional feature, one can optionally pass an n_tree
argument to predict to make predictions using only the first n_tree trees in the ensemble.
If one has access to a holdout set, this feature can be useful when deciding how many rounds
of boosting to use.

R> yhat = predict(boost, test_data[['X']])
R> phat = predict(boost, test_data[['X']], type='prob')

Figure 3 shows a histogram of the estimated probabilities returned by adaboost. It is clear
that the classifier is pushing the probabilities towards 0 and 1, a behavior that we discussed
in Section 2.2. The log-loss for this example is 0.96, which we will use as a reference in the
next section.

Figure 3: A histogram of probability estimates produced by AdaBoost on the two-dimensional
circle example. The probability estimates are pushed to the extremes of 0 and 1.

Matthew Olson 11

4.2. JOUS for probability estimates

The main function in this package is jous, which allows one to calculate probability estimates
using the sampling procedure described in Section 3. We implemented this function to work
generically with classification methods besides AdaBoost. The price of this flexibility is that
the user must write wrapper functions around the desired classifier to conform with the
expected input to jous. In the following piece of code, we fit jous to the adaboost classifier
considered in the last section:

R> class_func = function(X, y) adaboost(X, y, tree_depth = 5, n_rounds=250)
R> pred_func = function(fit_obj, X) predict(fit_obj, X)
R> jous_fit = jous(train_data[['X']], train_data[['y']], class_func = class_func,
+ pred_func = pred_func, keep_models = TRUE)
R> jous_fit

JOUS fit:
type: under
delta: 10

In-sample confusion matrix:
yhat

y -1 1
-1 651 0
1 0 349

The jous function expects to receive two functions as arguments, namely class_func and
pred_func. The class_func function takes as arguments a matrix X and a vector y of integer
class labels in {−1, 1}, and should return an object for which one can create predictions on
new data, usually through an interface to the predict generic function. The pred_func
function takes as arguments the object returned by class_func and a matrix of predictors
for test data, and returns integer class labels in {−1, 1}. In order to illustrate how these
wrapper functions get used, we have included code below that replicates the analysis in the
previous section.

R> ada_obj = class_func(train_data[['X']], train_data[['y']])
R> yhat = pred_func(ada_obj, test_data[['X']])

Unfortunately, such wrappers are necessary since there is no uniform interface in R for fitting
different types of classifiers to data: some classifier functions take matrices as inputs, while
others take data frames and accept formula notation for inputs. The advantage to this ap-
proach is that jous can be applied even to user defined classifiers. It is also worth mentioning
that since delta models will be fit in total, the user should strive to make the class_func
function as lean as possible in terms of memory usage.
Of course, we can also use our fit from the jous function to produce probability estimates.

R> yhat = predict(jous_fit, test_data[['X']])
R> phat = predict(jous_fit, test_data[['X']], type='prob')

12 Probability Estimation in R

The log-loss in probability estimates from using the JOUS procedure is 0.46, compared to
the log-loss from the direct AdaBoost probability estimate of 0.96. Note that both methods
achieve exactly the same misclassification rate.
We will close this section with a brief summary of additional important arguments to jous:

jous(X, y, class_func, pred_func, type="under", delta = 10, nu=1, X_pred=NULL,
keep_models=FALSE, verbose=FALSE, parallel=FALSE, packages=NULL)

• type - whether to consider “over" or “under-sampling" when creating artificial data sets.

• delta - the number of quantiles to consider in grid: the default value of 10 works well.

• nu - the amount of “jittering" to apply to predictors when using oversampling.

• X_pred - matrix of predictors at which to create probability estimates.

• keep_models - whether or not to store each model: needs to be set to TRUE if the user
wants to use predict.

• verbose - whether or not to print progress to the screen.

• parallel - whether or not to fit models using a parallel back-end.

• packages - a character vector of package names that get used in the class_func and
pred_func functions. Only necessary when parallel=TRUE.

4.3. JOUS for gradient boosting

In this section we will apply jous to gradient boosting machines from the R package gbm
(Ridgeway 2015). Gradient boosting is similar in nature to AdaBoost, but explicitly minimizes
binomial deviance using a gradient descent procedure (Friedman 2001). The role of this
example is twofold. First, the probabilities produced through gradient boosting should be
more principled since they arise from an explicit probability model. It is worthwhile to see
how the JOUS methodology performs in this scenario. Second, this example demonstrates a
more involved construction of wrapper functions.
We rely on the gbm function from the gbm package to fit our gradient boosting machine.
Here, gbm requires a data frame as an input argument, along with a formula that specifies the
target model. Our class_func wrapper, on the other hand, expects a matrix and a vector
as inputs, so we need to make the transformation explicitly in our wrapper.

R> class_func = function(X, y) {
+ df = data.frame(X=X, y=ifelse(y < 0, 0, 1))
+ gbm(y ~ ., data=df, shrinkage=0.1, n.tree = 1000,
+ interaction.depth = 1, distribution='bernoulli', bag.fraction = 0.5)}

The prediction function for gbm also requires a data frame as an input, so our pred_func
wrapper also needs to make a similar transformation. Here, there is the added complication
that the data frame needs to have the same names as the training data, but luckily we can
extract those from the fitted gbm object that gets passed into our wrapper.

Matthew Olson 13

R> pred_func = function(obj, X){
+ df = as.data.frame(X)
+ names(df) = obj$var.names
+ pred = predict(obj, df, n.tree=length(obj$trees))
+ ifelse(pred < 0, -1, 1)}

In Figure 4, we plot the test error rate, mean square error, and log loss as a function of boosting
iterations for two different gradient boosting machines. The top set of figures correspond to
boosting with depth eight trees, while the bottom set correspond to boosting with depth
one trees. The red line shows error rates for JOUS, while the black line shows error rates
for the probabilities output by gbm. When the depth of tree is set to eight, mean square
error (Figure 4b) and log-loss (Figure 4c) increase quickly with the number of iterations as
compared to JOUS. When the depth of tree is set to one, this phenomenon disappears and
the two methods of probability estimates are very comparable (Figures 4e and 4f). Thus, in
this instance, we can view jous as a hedge: jous returns reasonable probability estimates in
both settings.

(a) (b) (c)

(d) (e) (f)

Figure 4: Plots of the quality of probability estimates as a function of the number of boosting
rounds for a gradient boosting machine. The top three figures correspond to boosting with
depth 8 trees, and the bottom three figures correspond to boosting with depth 1 trees. Prob-
abilities produced by jous appear in red, while those from gbm appear in black.

4.4. JOUS for support vector machines

In this example, we will consider applying jous to a support vector machine with radial basis
kernel as found in the package kernlab (Karatzoglou et al. 2004). We will begin by fitting an
SVM to the data, and the using its output to create a probability estimate.

14 Probability Estimation in R

R> library('kernlab')
R> svp = ksvm(train_data[['X']], as.factor(train_data[['y']]), kernel='rbfdot')

We form probability estimates on the test set by normalizing the output of the support vector
machine. This is not the only way to do this, but it is commonly done in practice and will
serve for illustration purposes.

R> score = predict(svp, test_data[['X']], type='decision')
R> phat_svm = (score - min(score))/(max(score) - min(score))

Alternatively, we can form probability estimates in a more principled way by appealing to
the quantile estimation performed by jous.

R> class_func = function(X, y) ksvm(X, as.factor(y), kernel='rbfdot')
R> pred_func = function(obj, X) as.numeric(as.character(predict(obj, X)))
R> jous_obj = jous(train_data[['X'], train_data[['y']], class_func = class_func,
+ pred_func = pred_func, keep_models = T)
R> jous_pred = predict(jous_obj, test_data[['X']], type='prob')

We need to do a little extra work here when specifying our wrapper functions. The function
class_func takes a vector of integers while ksvm expects a factor, and so we must include
code in our wrapper to make the conversion. Similarly, pred_func needs to return an integer,
but the predict function returns a factor, and so conversions are needed here as well.
Figure 5 shows histograms of the actual and estimated probabilities. The histogram on the
far left shows what the distribution of the true probabilities should look like, and the two
histograms to the right show the distribution of probability estimates using a naive approach
and the JOUS approach. The naive approach concentrates probability in the wrong place -
near 0.2 - while the estimated produced by jous come closer to the truth.

(a) True probability (b) SVM probability (c) JOUS probability

Figure 5: Histograms of probability estimates using a support vector machine.

4.5. Using a parallel back-end

In this section we will provide a use case for running the jous function in parallel in the
example from the previous section. Before the user can run jous in parallel, she must first

Matthew Olson 15

instantiate a parallel back-end, such as that from the R package doParallel (Analytics and
Weston 2014a). There are two remaining arguments that need to be set in order to fit models
in parallel: parallel and packages. The second argument is a vector of strings that list
the libraries that get used in the class_func and pred_func functions. This extra step is
necessary since the nodes to which foreach allocates jobs do not share the same environment
as the code that calls it, and so we need to load whatever libraries are necessary on the
worker nodes. After registering the parallel back-end, one can then fit a JOUS model and
create predictions as follows:

R> library('doParallel')
R> cl <- makeCluster(4)
R> registerDoParallel(cl)

R> set.seed(123)
R> train_data = circle_data(1e4)
R> test_data = circle_data(1e4)

R> start_time = Sys.time()
R> jous_obj = jous(train_data[['X']], train_data[['y']], class_func = class_func,

pred_func = pred_func, parallel = TRUE, packages='kernlab',
keep_models = T)

R> phat_jous = predict(jous_obj, test_data[['X']], type='prob')
R> end_time = Sys.time()
R> end_time-start_time

R> stopCluster(cl)

Time difference of 11.97582 secs

We also include the serial version of the code for a speed comparison. With four cores, one
can just about cut the model fitting time in half.

R> start_time = Sys.time()
R> jous_obj = jous(train_data[['X']], train_data[['y']], class_func = class_func,

pred_func = pred_func, keep_models = T)
R> phat_svm = predict(jous_obj, test_data[['X']], type='prob')
R> end_time = Sys.time()
R> end_time-start_time

Time difference of 22.68876 secs

5. Conclusion
This article introduced the R package JOUSBoost for probability estimation with machine
learning classifiers, especially AdaBoost. Our intention was to motivate the necessity for

16 Probability Estimation in R

the JOUS methodology described in Mease et al. (2007) through the lens of its original
application, correcting the diverging probability estimates produced by AdaBoost. The aim
of the package was to extend this methodology to more general machine learning classifiers.
This was accomplished through modular code and efforts to make the implementation as
efficient as possible through C++ and parallelization. This article outlines several practical
use-cases of the jous function, specifically, correcting probability estimates from AdaBoost
and a support vector machine on simulated data. Our package also allows one to easily
replicate the results from Mease et al. (2007).
There is room for further improvement in both the JOUS algorithm and the package itself.
Recall that in Section 3.2 we discussed that one needs to take special care to ensure that the
estimated probabilities obey a natural monotonicity condition. The implemented solution is
admittedly ad hoc, and lacks theoretical justification. We also plan to introduce additional
methodology for probability estimation in later iterations of the package. Notably, we intend
to include support for Platt Scaling and Isotonic Regression which are popular methods
for producing calibrated probabilities from machine learning classifiers (Niculescu-Mizil and
Caruana 2005). While support for these methods is available in the Python package scikit-
learn, there is not yet a generic implementation in R (Pedregosa et al. 2011).
Finally, we would like to note that JOUS can produce good probability estimates only under
the assumption that the underlying classifier achieves (near) the Bayes error rate. Therefore,
we would not expect this procedure to be useful in all cases, especially when classification
performance is poor.

Acknowledgments
.
The author would like to acknowledge Justin Bleich and Josh Magarick for helpful comments
about the package’s design.

A. Derivation of re-weighting scheme
In this appendix we will spell out in a more detail the derivation of Equation 2, which gives
the ratio in which one must sample positive and negative examples in the training data in
order to achieve classification at conditional probability q. Our exposition will follow Mease
et al. (2007). Let us first define the following set of quantities:

p(x) = P (y = 1|x)
π = P (y = 1)

f+ (x) = P (x|y = 1)
f− (x) = P (x|y = −1)

which give the conditional class probability that y = 1 given x, the unconditional probabil-
ity that y = 1, and the conditional distributions of the predictor x given the class labels,
respectively. Using Bayes rule, we may write

Matthew Olson 17

p(x) = f+ (x) π

f+ (x) π + f− (x) π
.

We can the write the ratio of conditional class probabilities as

p(x)
1 − p(x) = f+ (x) π

f− (x) (1 − π)

which is the same as

p(x) (1 − π)
(1 − p(x)) π

= f+ (x)
f− (x) .

Now, assume that f+ (x) and f+ (x) do not change if we alter the marginal distribution of
y. Let us suppose that the marginal distribution of y changes from π to π∗, and denote the
new corresponding conditional class probability as p∗(x). Using our assumption, we may now
write

p(x) (1 − π)
(1 − p(x)) π

= p∗(x) (1 − π∗)
(1 − p∗(x)) π∗ .

It is clear that the thresholds q on p(x) and q∗ on p∗(x) transform in the same way so that

q (1 − π)
(1 − q) π

= q∗ (1 − π∗)
(1 − p∗(x)) π∗ .

This leaves us with the following question: what value of π∗ allows us to map q to q∗ = 1/2
(given π). Simple algebra shows the value of π∗ satisfies

π∗

1 − π∗ = (1 − q)π
q(1 − π) . (3)

All of this occurs at the “population" level. If we observe N+ positively labeled examples
and N− negatively labeled examples in our training data, we estimate π with N+

N++N−
. Our

target data set with π∗ is generated by resampling the observed data to arrive at k+ positive
examples and k− examples such that π∗ = k+

k++k−
and π∗ satisfies Equation 3.

B. Code for Section 2.2

set.seed(123)

library('rbenchmark')
library('adabag')
library('ada')
library('fastAdaboost')

18 Probability Estimation in R

train_data = JOUSBoost::circle_data(1e3)
test_data = JOUSBoost::circle_data(1e4)

train_df = data.frame(X=train_data$X, y=as.factor(train_data$y))
test_df = data.frame(X=test_data$X, y=as.factor(test_data$y))

n_rounds = 250
n_reps = 10

t_fast = benchmark({
fast_boost = adaboost(y ~ ., train_df, nIter=n_rounds)
yhat_fast = predict(fast_boost, newdata=test_df)

}, replications = n_reps)

control_fast = get_tree(fast_boost, 1)[['0']]$control
t_jous = benchmark({

jous_boost = JOUSBoost::adaboost(train_data[['X']], train_data[['y']],
n_rounds=n_rounds, control=control_fast)

yhat_jous = JOUSBoost::predict.adaboost(jous_boost, test_data[['X']])
}, replications=n_reps)

t_ada = benchmark({
ada_boost = ada(train_data[['X']], train_data[['y']], loss='exponential',

type='discrete', iter=n_rounds, bag.frac=1, control_fast)
yhat_ada = predict(ada_boost, as.data.frame(test_data[['X']]))

}, replications=n_reps)

t_adabag = benchmark({
adabag_boost = boosting(y ~ ., data = train_df, mfinal=n_rounds, boos=FALSE,

coeflearn='Freund', control=control_fast)
yhat_adabag = predict(adabag_boost, test_df)

}, replications=n_reps)

t_fast$elapsed
t_jous$elapsed
t_ada$elapsed
t_adabag$elapsed

object.size(fast_boost)
object.size(jous_boost)
object.size(ada_boost)
object.size(adabag_boost)

References

Matthew Olson 19

Analytics R, Weston S (2014a). doParallel: foreach Parallel Adaptor for the Parallel Package.
R package version 1.0.8, URL http://CRAN.R-project.org/package=doParallel.

Analytics R, Weston S (2014b). foreach: Foreach Looping Construct for R. R package version
1.4.2, URL http://CRAN.R-project.org/package=foreach.

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002). “SMOTE: Synthetic Minority
Over-Sampling Technique.” Journal of artificial intelligence research, 16, 321–357.

Culp M, Johnson K, Michailidis G (2012). ada: an R Package for Stochastic Boosting. R
package version 2.0-3, URL http://CRAN.R-project.org/package=ada.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/i08/.

Elkan C (2001). “The Foundations of Cost-Sensitive Learning.” In International joint con-
ference on artificial intelligence, volume 17, pp. 973–978. LAWRENCE ERLBAUM ASSO-
CIATES LTD.

Fan W, Stolfo SJ, Zhang J, Chan PK (1999). “AdaCost: Misclassification Cost-Sensitive
Boosting.” In Icml, pp. 97–105.

Freund Y, Schapire RE (1996). “Experiments with a New Boosting Algorithm.” In ICML,
volume 96, pp. 148–156.

Friedman J, Hastie T, Tibshirani R, et al. (2000). “Additive Logistic Regression: a Statistical
View of Boosting (with discussion and a rejoinder by the authors).” The Annals of Statistics,
28(2), 337–407.

Friedman JH (2001). “Greedy function approximation: a gradient boosting machine.” Annals
of statistics, pp. 1189–1232.

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). “kernlab – An S4 Package for Kernel
Methods in R.” Journal of Statistical Software, 11(9), 1–20. URL http://www.jstatsoft.
org/v11/i09/.

Mease D, Wyner A, Buja A (2007). “Cost-Weighted Boosting with Jittering and Over/Under-
Sampling: JOUS-boost.” J. Machine Learning Research, 8, 409–439.

Niculescu-Mizil A, Caruana R (2005). “Predicting Good Probabilities with Supervised Learn-
ing.” In Proceedings of the 22nd international conference on Machine learning, pp. 625–632.
ACM.

Olson M (2017). JOUSBoost: Implements Under/Oversampling for Probability Estimation.
R package version 2.1.0, URL http://CRAN.R-project.org/package=JOUSBoost.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pret-
tenhofer P, Weiss R, Dubourg V, et al. (2011). “Scikit-learn: Machine learning in Python.”
Journal of Machine Learning Research, 12(Oct), 2825–2830.

Platt JC (1999). “Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods.” In ADVANCES IN LARGE MARGIN CLASSIFIERS,
pp. 61–74. MIT Press.

http://CRAN.R-project.org/package=doParallel
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=ada
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v11/i09/
http://www.jstatsoft.org/v11/i09/
http://CRAN.R-project.org/package=JOUSBoost

20 Probability Estimation in R

Ridgeway G (2015). gbm: Generalized Boosted Regression Models. R package version 2.1.1,
URL http://CRAN.R-project.org/package=gbm.

Robnik-Sikonja M, Savicky P (2017). CORElearn: Classification, Regression and Feature
Evaluation. R package version 1.50.3, URL https://CRAN.R-project.org/package=
CORElearn.

Schapire RE, Freund Y (2012). Boosting: Foundations and algorithms. MIT press.

Therneau T, Atkinson B, Ripley B (2015). rpart: Recursive Partitioning and Regression
Trees. R package version 4.1-9, URL http://CRAN.R-project.org/package=rpart.

Wang J, Shen X, Liu Y (2008). “Probability Estimation for Large-Margin Classifiers.”
Biometrika, 95(1), 149–167.

Zhang C, Shin SJ, Wang J, Wu Y, Zhang HH, Liu Y (2013). probsvm: Class Probability
Estimation for Support Vector Machines. R package version 1.00, URL https://CRAN.
R-project.org/package=probsvm.

Affiliation:
Matthew Olson
The Wharton School of the University of Pennsylvania
E-mail: maolson@wharton.upenn.edu

http://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=CORElearn
https://CRAN.R-project.org/package=CORElearn
http://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=probsvm
https://CRAN.R-project.org/package=probsvm
mailto:maolson@wharton.upenn.edu

	Introduction
	Background
	AdaBoost
	Probability estimates for AdaBoost

	The JOUS algorithm
	Motivation
	Implementation details

	The JOUSBoost package
	AdaBoost implementation
	JOUS for probability estimates
	JOUS for gradient boosting
	JOUS for support vector machines
	Using a parallel back-end

	Conclusion
	Derivation of re-weighting scheme
	Code for Section 2.2

